
26 The Delphi Magazine Issue 43

Under Construction:
Delphi 4 And CORBA
by Bob Swart

One of the major enhancements
in recent versions of Inprise

tools is CORBA support. This is
available in the Client/Server edi-
tions of Delphi 4 and JBuilder 2,
plus C++Builder 4 Enterprise. In
this article, we’ll see how easy it is
to build a CORBA server and client
in Delphi 4 Client/Server.

But first, let’s look at what
CORBA is all about. CORBA stands
for Common Object Request
Broker Architecture, and is an
object oriented communication
architecture between a client and a
server. Communication is handled
by an ORB (Object Request
Broker) and IIOP (Internet
InterORB Protocol). Using IDL
(Interface Definition Language) we
can specify objects with methods
and properties. Methods are like
functions that can be called by the
client, and will be implemented
(serviced) by the server. In order
to do so, the IDL file must be com-
piled. This results in stub code for
the client (so we can invoke the
methods without worrying about
the underlying communication)
and skeleton code for the server
(which is the basis for our commu-
nication on the server side).
CORBA is independent of both
platform and language. This can
only work if the parameters and
return types of the methods are
transported over the network in a
portable format. Conversion from
a native type to a portable IDL type
is called marshalling, while
conversion back to a native plat-
form or language type is called
un-marshalling.

In using Delphi to put CORBA
into practice I’ve decided to take
the NNTP news reader component
(from the last two issues) and
create a newsgroup CORBA server
and a CORBA Client. The CORBA
News Server is connected to the
‘real’ internet (for example on our

web server just in front of the com-
pany’s firewall), while the CORBA
News Client is running on my
machine, which is not connected
to the internet but uses the
intranet to connect to the web
server, behind the firewall (ie only
‘inside’ the office). This is a useful
real world application, since the
CORBA News Server is now able to
obtain (and provide to the client)
newsgroups and articles that oth-
erwise I’d have no access to.

The CORBA News Server
The CORBA server application is
just a regular application, using the
TBNNTP component we created last
time (but in general it can be any
regular application). To turn it into
a CORBA server we need to add a
CORBA object to it. We use the
CORBA object wizard from the
Object Repository to create a
server that can be accessed
remotely by CORBA clients. From
the File | New - Multitier tab, we
chose CORBA Object, to get the
CORBA Object Wizard (Figure 1).

First, we specify the classname
of our CORBA object, derived from
TCorbaImplementation. Note that
you should not put a T in front of
the classname, since it will be
added automatically by Delphi
(and so will the I for the interface
class). The instancing option spec-
ifies how the CORBA server appli-
cation creates instances of the
CORBA object. We can either spec-
ify instance-per-client, so a new
object is created for each client
connected (until the
connection is closed),
or shared-instance,
where one single
instance of the CORBA
object handles all
client requests.

Although I’m the only client, I’m
not sure if using the same CORBA
object to handle all news requests
is a good idea, so I’ve specified
instance-per-client (the default).

Threading specifies how the
client requests call our CORBA
object interface. This can be set to
either single-threaded, where each
CORBA object gets only one client
request at a time, or multi-
threaded, where each client
request gets its own thread. To
avoid thread conflicts, I’ve speci-
fied single-threaded (again the
default), which means that the
CORBA object instance data is
safe, but I should still protect
global memory from potential
thread conflicts (with multi-
threading we would also have to
protect instance data itself).

This yields the source code
shown in Listing 1.

Our CORBA object TNewsgroup
Server is derived from TCorba
Implementation, and implements
the INewsgroupServer interface
(which we will specify soon). Note
the TDM43_TLB unit, which is the
(generated) ObjectPascal version
of the type library that contains
the compiled IDL specifications.
Just like DCOM, for those with
prior type library experience. To
define new properties and meth-
ods for our CORBA object, we need
to start the Type Library Editor
from the View | Type Librarymenu.

Since our CORBA News Server
will be passing information to our
CORBA News Client, we must
define some methods to pass the
information along. Such as a
method to connect to a particular
newsgroup, a method to query the
number of messages inside a
newsgroup, and a method to get an
article from that newsgroup (I
won’t bother with posting or reply-
ing at this time: see last month).

➤ Figure 1

28 The Delphi Magazine Issue 43

To define a new method, we need
to select the INewsgroupServer (ie
the interface object) and either
directly click on the green arrow
button, or right click with the
mouse and select New | Method (see
Figure 2). We can change the name
of the new method to Join
Newsgroup and click on the Parame-
ters tab to specify the parameters
and return type. At this time, two
things can happen. Either we see
the default return type specified as
Integer or as HRESULT. The former
uses a special Pascal syntax for
IDL, while the latter uses official
IDL. Since I plan to use CORBA and
IDL in many different development
environments, I never use the
Pascal-like IDL syntax, but always
the real IDL. You can specify which
IDL you want to see in the Tools |
Environment Options - Type Library
tab (the Language option is either
Pascal or IDL). And even if you
prefer to use the Pascal language

yourself, for the remainder of this
article we’ll be using straight IDL.

Now, our method JoinNewsgroup
should have one input argument
(the name of the newsgroup, of type
LPSTR, a PChar in Pascal terms, and
modifier [in] so it’s only used as a
read-only input type), and a default
return type (HRESULT, resulting in a
procedure safecall in Pascal
terms). Apart from the newsgroup
input argument, we can click on the
Add button to specify more argu-
ments, like number of articles from
the newsgroup in an output argu-
ment named NumberOfArticles of
type HRESULT* (note that output
parameters require a pointer type
to be returned, so we cannot
simply return an integer here). See
also Figure 3.

After we’ve specified the argu-
ments we need, we can click on the
Refresh Implementation button on
the toolbar (the one with the two
little green arrows), to see a new
server skeleton method defined in
unit2:

procedure JoinNewsgroup(
Newsgroup: PChar;
out NumberOfArticles:
HResult); safecall;

This method should be called by a
CORBA News Client in order to join
a newsgroup and can be imple-
mented as shown in Listing 2
(assuming that unit1 is added to
the uses clause of unit2, the TBNNTP
component exists on the
auto-created MainForm, and only
one instance of both the CORBA
object and form exist, as we speci-
fied in the CORBA Object Wizard
earlier).

We can add more methods in
this way, to obtain entire messages
from the CORBA News Server, but
the tricky part is getting the com-
munication between the CORBA
Client and Server working, so we’ll
focus on that now (we can add the
other methods later).

Before we leave the CORBA
News Server alone, however, I
want you to take a look at the Text
tab of the Type Library for the
entire TDM43 server, and take a look
at what the IDL language looks like.
If you plan to use CORBA more,
then this should become second
nature for you (and it isn’t that
hard to learn, especially since the
CORBA IDL to ObjectPascal trans-
lation is done automatically when
we update our implementation
from within the Type Library).

The CORBA News Client
To start working with the CORBA
News Client, we must make sure
that we can find the CORBA News
Server somewhere on our intranet.
We must first run the VisiBroker
Smart Agent (part of Delphi 4
Client/Server), or install Smart
Agent as a service on at least one

procedure TNewsgroupServer.JoinNewsgroup(Newsgroup: PChar;
out NumberOfArticles: HResult);

begin
with Form1 do begin
BNNTP1.JoinNewsgroup(Newsgroup);
NumberOfArticles := BNNTP1.LastArticle - BNNTP1.FirstArticle

end
end {JoinNewsgroup};

➤ Above: Listing 1 ➤ Below: Listing 2

unit Unit2;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, ComObj, StdVcl,
CorbaObj, TDM43_TLB;

type
TNewsgroupServer = class(TCorbaImplementation, INewsgroupServer)
private
public
end;

implementation
uses CorbInit;
initialization
TCorbaObjectFactory.Create('NewsgroupServerFactory',
'NewsgroupServer', 'IDL:TDM43/NewsgroupServerFactory:1.0', INewsgroupServer,
TNewsgroupServer, iMultiInstance, tmSingleThread);

end.

➤ Left: Figure 2, Right: Figure 3

30 The Delphi Magazine Issue 43

machine on our intranet (in prac-
tice, the web server itself is a fine
choice for this, but I could also use
my own client machine). If the
Smart Agent is running, we can
start the CORBA News Server,
which will just show the main form
with the BNNTP component and do
nothing (other than waiting for
CORBA News Clients to send
requests for joining newsgroups,
since that’s the only thing it can do
at this time).

At this time, we can start build-
ing the CORBA News Client. Just
start another regular application.
Now, instead of adding a CORBA
Object to this regular application
(like we did for the server), we can
just re-use the CORBA IDL that we
created for the Server. Remember
(from the introduction) that
CORBA IDL compiles to both a
Server Skeleton and a Client Stub.
And we already implemented the
Server Skeleton, so right now we
only need a Client Stub, without
implementation. In order to re-use
the CORBA IDL, we just add the
unit TDM43_TLB.PAS to our new
application project using Project |
Add to Project and select the
TDM43_TLB.PAS file. Note that this
file will be generated automatically
whenever the IDL is refreshed

(which we should generally only
do at the Server side, since the
Server side actually implements
the IDL Skeleton methods, and the
Client side only calls them). We
must add the TDM43_TLB unit to the
uses clause of our News Client
unit1, in order to be able to call the
CORBA NewsGroup object stub
methods (that are implemented at
the Server side, remember?).

We’re almost ready. All we need
to do now is make sure we can
actually work with the CORBA
NewsGroup object from within our
client application. For this, we
need to define a variable of type
INewsgroupServer in the Form, and
we can use the FormCreate and
FormDestroy events to create and
destroy this CORBA Object auto-
matically for us (see Listing 3 for
the syntax that we need to use).

The only thing that’s left (for
now) is a button and editbox on the
CORBA News Client Form, with the
OnClick event of the button calling
the NewsgroupServer.JoinNewsgroup
method, with the content of the
editbox as an argument, placing
the resulting number of articles
value back in the editbox. This is
implemented as shown in Listing 4.

A simple test run of the CORBA
News Client (while the CORBA

News Server and Smart Agent are
running as well, of course), tells me
there are 42 messages in my news.
shoresoft.com/drbob newsgroup,
all without a real internet
connection on my machine!

Advanced CORBA
What we’ve seen so far is basic
CORBA. It gets better (and worse)
if you want to extend the function-
ality with callbacks (from the
client back to the server) or error
recovery (say a newsgroup does-
n’t exist, and we want to raise an
exception on the server).

Some of these more advanced
CORBA techniques will be covered
in a future article on callbacks,
others may be found in Delphi 4
Unleashed or at the new CORBA
section of my website at www.
drbob42.com/CORBA/.

Next Time
In the introduction, I told you that
CORBA is cross-platform and also
cross-language. And that’s also the
introduction for next time, when
my friend Hubert A Klein Ikkink
(aka Mr.Haki) will join me to con-
nect a Java applet to a Delphi web
server application. The tech-
niques we’ll use include HTTP
(CGI), sockets, CORBA and DCOM.
We’ll try to show you all the possi-
ble inter-language communication
options, of course, so stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder
for Bolesian and a freelance
technical author. In his spare time,
Bob likes to watch video tapes
of Star Trek Voyager and Deep
Space Nine with his 4.5-year-old
son Erik Mark Pascal and his
2-year-old daughter Natasha
Louise Delphine.

procedure TForm1.Button1Click(Sender: TObject);
var
Newsgroup: PChar;
Articles: HRESULT;

begin
Newsgroup := PChar(Edit1.Text);
NewsgroupServer.JoinNewsgroup(Newsgroup, Articles);
Edit1.Text := Edit1.Text + ' ' + IntToStr(Articles)

end;

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
TDM43_TLB;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
public
NewsgroupServer: INewsgroupServer;

end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
NewsgroupServer :=
TNewsgroupServerCorbaFactory.CreateInstance('NewsgroupServer');

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
NewsgroupServer := nil

end;
end.

➤ Above: Listing 3 ➤ Below: Listing 4

	The CORBA News Server
	The CORBA News Client
	Advanced CORBA
	Next Time

